Question	Working	Answer	Mark	Notes
1	6-12x or		3	M1 for expansion of bracket on the LHS or
	$2 - 4x = \frac{5}{3} - \frac{8}{3}x$			dividing the RHS by 3 with two terms
	6-5=12x-8x or 1=4x or			M1 ft (dep on 4 terms) for terms in x on one
	-12x + 8x = 5 - 6 oe or $-4x = -1$ or			side of equation; number terms on the other
	$\frac{8}{3}x - 4x = \frac{5}{3} - 2$ oe or $2 - \frac{5}{3} = -\frac{8}{3}x + 4x$ oe			
	Working required	1		A1 oe dep on M1 awarded
		$\frac{\overline{4}}{4}$		
				Total 3 marks

Question	Working	Answer	Mark	Notes
2		8 12 11 13 15 17 19	3	B3 Fully correct (B2 for 2 or 3 'regions' correct, B1 for one 'region' correct)
				Total 3 marks

Question	Working		Answer	Mark	Notes	
3	eg $5x + 4y = -2$ + 8x - 4y = 17.6 (13x = 15.6) eg $[x = \frac{4.4 + y}{2}]$ oe $5(\frac{4.4 + y}{2}) + 4y = -2$ oe	eg $10x + 8y = -4$ -10x - 5y = 22 (13y = -26) eg [$y = 2x - 4.4$] oe $5x + 4(2x - 4.4) = -2$ oe		3	M1 multiplication of one or both with correct operation selected arithmetic error) (if + or - in then assume it is the operation of the 3 terms have been calcount or correct rearrangement of one substitution into second	ed (allow one s not shown on that at least 2 culated for)
	eg $5 \times "1.2" + 4y = -2$ or $2 \times "1.2" - y = 4.4$	eg $5x + 2 \times \text{``}-2\text{''} = 4.4$ or $2x - \text{``}-2\text{''} = 4.4$			M1 (dep on previous M1 but not first value) correct method to unknown – this could be a consubstitution into one of the end or calculated or starting againstyle of working as for the first	o find second orrect quations given n with the same
	Working required		x = 1.2 $y = -2$		A1 oe eg $x = \frac{6}{5}$ for both solutions dependent	on first M1
						Total 3 marks

Question	Working	Answer	Mark	Notes
4 (a)		9	1	B1 oe
		10		
(b)		-6	1	B1
				Total 2 marks

Question	Working	Answer	Mark	
5 (a)		$\frac{2}{9}, \frac{7}{9}$	2	B1 for correct probabilities for the first card
		$\frac{1}{9}, \frac{1}{9}$		Allow equivalent probabilities e.g 0.2
		1 7 2 6		B1 for correct probabilities for the second card
		$\frac{1}{8}$, $\frac{7}{8}$, $\frac{2}{8}$, $\frac{6}{8}$		Allow equivalent probabilities
(b)	"2"\"1" or		2	M1ft
	$\frac{1}{9}$ $\stackrel{\wedge}{8}$ $\frac{1}{8}$			(All probabilities must be less than 1)
	$"\frac{2}{9}" \times "\frac{1}{8}"$ or $1 - "\frac{2}{9}" \times "\frac{7}{8}" - "\frac{7}{9}" \times "\frac{2}{8}" - "\frac{7}{9}" \times "\frac{6}{8}"$ Correct answer scores full marks (unless from obvious			
	contest that we see a just man is (mires j. on contests	1		A1ft oe probability must be less than 1
	incorrect working)	36		Allow equivalent decimal to at least 2 sf
				(truncated or rounded) for $\frac{1}{36}$ (= 0.027(77))
(c)	" $\frac{2}{9}$ "×" $\frac{7}{8}$ " or " $\frac{7}{9}$ "×" $\frac{2}{8}$ "oe or		3	M1ft
	9 8 9 8			(All probabilities must be less than 1)
	" $\frac{2}{9}$ "×" $\frac{1}{8}$ " and " $\frac{7}{9}$ "×" $\frac{6}{8}$ " oe or			
	" $\frac{1}{36}$ "and " $\frac{7}{9}$ "×" $\frac{6}{8}$ "oe			
	"\frac{1}{36}\"\text{and}\"\frac{7}{9}\"\times\"\frac{6}{8}\"\text{oe}\" \[\frac{2}{9}\"\times\"\frac{7}{8}\" + \"\frac{7}{9}\"\times\"\frac{2}{8}\"\ \text{or}\ \ 2\times\frac{14}{72}\text{oe}\ \text{or}\]			M1ft
	$1 - \frac{2}{9} \times \frac{1}{8} = \frac{7}{9} \times \frac{6}{8}$ oe or			
	$1 - \frac{1}{36} - \frac{7}{9} \times \frac{6}{8}$ oe			
	Correct answer scores full marks (unless from obvious	7		A1ft oe probability must be less than 1
	incorrect working)	$\frac{7}{18}$		Allow equivalent decimal to at least 2 sf
				(truncated or rounded) for $\frac{7}{18}$ (= 0.38(88))
				Total 7 marks

Question	Working	Answer	Mark	Notes	
6	$\frac{26}{7}, \frac{13}{8}$ oe		3	M1 both fractions expressed as improper fractions, need for \div or \times may be equivalent to those gives eg $\frac{52}{14}$, $\frac{26}{16}$ etc. A student could invert $\frac{13}{8}$ an show multiplication - as shown in the 2nd M1, mark is then implied.	en nd
	$\frac{26}{7} \times \frac{8}{13}$ oe or eg $\frac{208}{56} \div \frac{91}{56}$			M1 or for both fractions expressed as equivalent fractions with denominators that are a common multiple of 7 and 8 eg $\frac{208}{56} \div \frac{91}{56}$	l
	eg $\frac{26}{7} \times \frac{8}{13} = \frac{208}{91} = \frac{16}{7} = 2\frac{2}{7}$ or $\frac{26}{7} \times \frac{8}{13} = \frac{208}{91} = 2\frac{26}{91} = 2\frac{2}{7}$ or $\frac{26^2}{7} \times \frac{8}{13^1} = \frac{16}{7} = 2\frac{2}{7}$ or $\frac{208}{56} \div \frac{91}{56} = \frac{208}{91} = \frac{16}{7} = 2\frac{2}{7}$ or correct working to $\frac{16}{7}$ and writing $2\frac{2}{7} = \frac{16}{7}$ (usually on the first line of working) working required	shown		NB: use of decimals scores no marks (unless used as a check)	
	3 /			Total 3 ma	arks

Question	Working	Answer	Mark	Notes
7 (a)		1	1	B1
(b)		$27a^6b^{12}$	2	B2 (B1 for 2 of 3 parts in a product)
(c)		$7x^2y^2(2y^2 + 3x)$	2	B2 B1 for a correct factorisation with at least 2 factors outside (eg $7x$, x^2 , xy , etc) eg $7x(2xy^4 + 3x^2y^2)$ eg $x^2y^2(14y^2 + 21x)$ or for the correct common factor with just one mistake inside the bracket eg $7x^2y^2(2y+3x)$ which is missing the squared on the y term
(d)	$y = mx + 4$ where $m \neq 0$ oe (eg $y = 2x + 4$) or y = -2x + c or $y + 2x = c$ oe or -2x + 4 or $f(x) = -2x + 4$ oe		2	M1
	Correct answer scores full marks (unless from obvious incorrect working)	y = -2x + 4		A1 oe eg $y+2x=4$
				Total 7 marl

Question	Working	Answer	Mark	Notes
8	$(54-24) \div 2 (=15)$ [may be marked on diagram]		5	M1
	$"15"^2 - (24 \div 2)^2 (= 81)$			M1 ft their "15" (if > 12)
	[height =] $\sqrt{"15"^2 - (24 \div 2)^2} (=9)$			M1 ft their "15" (if > 12)
	$(24 \times "9") \div 2$ oe			M1 figures must be from correct working
	Correct answer scores full marks (unless from obvious incorrect working)	108		A1 allow 107.9 – 108.1
	ALTERNATIVES BELOW			Total 5 marks
	$(54-24) \div 2 (=15)$ [may be marked on diagram]		5	M1
	or $x = \cos^{-1}\left(\frac{"12"}{"15"}\right) (= 36.86)$ or $y = \sin^{-1}\left(\frac{24 \div 2}{"15"}\right) (= 53.13)$ or $A = \cos^{-1}\left(\frac{15^2 + 15^2 - 24^2}{2 \times 15 \times 15}\right) (= 106.2)$ or $B = \cos^{-1}\left(\frac{15^2 + 24^2 - 15^2}{2 \times 15 \times 24}\right) (= 36.8)$			M1 ft their "15" (if > 12) $ [using Hero's formula S = 0.5 \times 54 (= 27) \text{ and }] $ $ 27 \times (27 - 24) \times (27 - "15") \times (27 - "15") $
	or "12" tan" 36.86" (= 9) (allow 8.9 for these) "12" ÷ tan" 53.13" (= 9) or "15" × sin "36.86" (= 9) or "15" × cos "53.13" (= 9) (24×"9") ÷ 2 oe			M1 ft their 0.5 × 24 × "15" × sin"36.86" or 0.5 × "15" × "15" × sin(2 × "53.13") or (if > 0.5 × "15"×"15"×sin("106.2") or $\sqrt{27}$ "("27"-24)("27"-"15")
	Correct answer scores full marks (unless from obvious incorrect working)	108		A1 allow 107.9 – 108.1
				Total 5 marks

Question		Working		Answer	Mark		Notes
9 (a	.)			43.5 - 44.5	1	B1	±0.5 small square
(b))	eg reading of 48 - 49			2	M1	For correct method to start the question eg a vertical line from 55 up to the line and a horizontal line from the correct point on the curve or a mark on the curve at the correct point and a mark on the vertical axis at the correct point or a correct reading of 48 to 49
		Correct answer scores f obvious incorrect worki		11 or 12		A1	Allow an answer of 11 or 12 (ie must be whole number)
(c		Time taken to shop in the market (m minutes) $0 < m \le 10$ $10 < m \le 20$	Frequency 3 5		2	B2	All values correctly filled in (NB: first 2 are already completed) (B1 for 3 or 4 correct values from 7, 10, 15, 15, 5)
		20 < m ≤ 30	7				
		$30 < m \le 40$ $40 < m \le 50$	10				
		50 < m ≤ 60	15				
		$60 < m \le 70$	5				
							Total 5 marks

Qn	Working	Answer		Notes
10	$3x(2x-5) = 6x^2 - 15x \text{ or}$ $(2x-5)^2 = 4x^2 - 10x - 10x + 25\text{ or}$		3	correct or for multiplying $(2x - 5)$ by $(2x - 5)$ with 3 out of 4 terms correct or
	$(2x-5)^2 = 4x^2 - 20x + 25$			for multiplying $(2x - 5)$ by $(2x - 5)$ and getting $4x^2 - 20x$ or $-20x + 25$ (not for $4x^2 + 25$) M1ft (dep) for multiplying the product of $3x$ and
	$(6x^2 - 15x)(2x - 5) = 12x^3 - 30x^2 - 30x^2 + 75x \text{ oe or}$			(2x-5) by $(2x-5)$ with 3 out of 4 terms correct or
	$(6x^2 - 15x)(2x - 5) = 12x^3 - 60x^2 + 75x$ oe or			for multiplying the product of $3x$ and $(2x-5)$ by $(2x-5)$ and getting $12x^3-60x^2$ or $60x^2+75x$
	$3x(4x^2 - 10x - 10x + 25) = 12x^3 - 30x^2 - 30x^2 + 75x \text{ oe or}$			for multiplying the product of $(2x - 5)$ and $(2x - 5)$ by $3x$ with 3 out of 4 terms correct or
	$3x(4x^2 - 20x + 25) = 12x^3 - 60x^2 + 75x$			for multiplying the product of $(2x - 5)$ and $(2x - 5)$ by $3x$ with 2 out of 3 terms correct or Expansion in one stage will lead to $12x^3 - 30x^2 - 30x^2 + 75x$ without firstly expanding two factors – award M2 for 3 out of 4 terms correct M1 for 2 out of 4 terms correct
	Working required	$12x^3 - 60x^2 + 75x$		A1 dep on M1
				Total 3 marks

Question	Working	Answer	Mark	Notes
11	Two pairs of intersecting arcs with equal radii centre A and B		2	M1 for arcs that intersect within or on the guidelines or correct perpendicular bisector without arcs.
	Working required	Bisector with construction arcs		A1 for a fully correct bisector with two intersecting arcs
				Total 2 marks

Question	Working	Answer	Mark	Notes
12		В	3	B1
		A		B1
		F		B1
				Total 3 marks

	Working		Answer	M		otes
13	$x^2 + (7 - 2x)^2 = 34$	$\left(\frac{7-y}{2}\right)^2 + y^2 = 34$		5	M1	substitution of linear equation into quadratic
	$5x^2 - 28x + 15[=0]$ oe	$5y^2 - 14y - 87[=0] \text{ oe}$			M1	dep on previous M1 for multiplying out and collecting terms, forming a three term quadratic in any form of $ax^2 + bx + c$ (= 0) where at least 2 coefficients (a or b or c) are correct and all are non-zero
	$(5x-3)(x-5) = 0$ or $-(-28) \pm \sqrt{(-28)^2 - 4 \times 5 \times 15}$ 2×5	or $ \frac{(5y - 29)(y + 3) [= 0]}{-(-14) \pm \sqrt{(-14)^2 - 4 \times 5 \times (-3)^2}} $	87)		M1ft	quadratic equation using any correct method (if factorising, allow brackets which expanded give 2 out of 3 terms correct) (if using formula allow one sign
	or $5[(x-\frac{28}{10})^2 - \frac{784}{100}] + 15 = 0$ oe or	or $5[(y - \frac{14}{10})^2 - \frac{196}{100}] - 87 = 0$ or				error and some simplification – allow as far as $\frac{28 \pm \sqrt{784 - 300}}{10}$ or $\frac{14 \pm \sqrt{196 + 1740}}{10}$)
	x = 0.6 and $x = 5$ (allow incorrect labels for x/y)	y = 5.8 and $y = -3$ (allow incorrect labels for x/y	<i>y</i>)			10 (if completing the square allow as far as shown) or correct values for x or correct values for y dep on correct quadratic
	eg $y = 7 - 2 \times 5$ and $y = 7 - 2 \times 0.6$	eg $5.8 = 7 - 2x$ and $-3 = 7 - 2x$			M1ft	dep on previous M1 for substituting their 2 found values of <i>x</i> or <i>y</i> in a suitable equation
	(correct labels for <i>x/y</i>)	(correct labels for x/y)	0.6			or correct values for the other variable
	Working must be shown		x = 0.6, y = 5.8 x = 5, y = -3		A1	dep on M1 and the correct quadratic (allow coordinates) must be paired correctly
					-	Total 5 marks

Question	Working	Answer	Mark	Notes
14	eg $1000x = 438.38$ or $100x = 43.838$ x = 0.438 oe eg $1000x - 10x = 438.38 4.38 = 434$ and $\frac{434}{990} = \frac{217}{495}$ or $eg 100x - x = 43.838 0.438 = 43.4 and \frac{43.4}{99} = \frac{217}{495} or eg 1000x - 10x = 38.38 0.3838 = 38 and 0.4 + \frac{38}{990} = \frac{4 \times 99 + 38}{990} = \frac{434}{990} = \frac{217}{495} oe working required$	Clearly shown	2	M1 For selecting 2 correct recurring decimals that when subtracted give a whole number or terminating decimal (43.4 or 434 etc) eg $1000x = 438.38$ and $10x = 4.38$ or $100x = 43.838$ and $x = 0.438$ with intention to subtract. (if recurring dots not shown then showing at least one of the numbers to at least $5sf$) or $0.4 + 0.038$ and eg $1000x = 38.38$ & $10x = 0.3838$, with intention to subtract. A1 For completion to $\frac{217}{495}$ dep on M1 and use of some algebra
				Total 2 marks

Question	Working	Answer	Mark	Notes	
15	$y = \frac{k}{\sqrt{x}}$ or $ky = \frac{1}{\sqrt{x}}$ or $\sqrt{x} = \frac{k}{y}$ oe		3	M1 (NB. Not for $y = \frac{1}{\sqrt{x}}$) Constant of proportionality must be a symbol such as k (Allow c for k for this mark only)	M2 for $c^4 = \frac{k}{\sqrt{c^2}}$ oe
	$c^4 = \frac{k}{\sqrt{c^2}}$ oe or $k = c^4 \times \sqrt{c^2}$ oe			M1 for substitution of x and y into a correct formula	
	Correct answer scores full marks (unless from obvious incorrect working)	$y = \frac{c^5}{\sqrt{x}}$		A1 oe e.g $y = c^5 \times \frac{1}{\sqrt{x}}$	
				Award 3 marks if answer is	
				$y = \frac{k}{\sqrt{x}}$ on the answer line and $k =$	$= c^5$ clearly given in
				the body of working of the script	
					Total 3 marks

Question	Working	Answer	Mark	Notes
16	$(6x-5)(x+7)(=0) \text{ or}$ $\frac{-37 \pm \sqrt{37^2 - 4 \times 6 \times -35}}{2 \times 6}$ $6\left[\left(x + \frac{37}{12}\right)^2 - \left(\frac{37}{12}\right)^2\right] \dots \text{ oe}$		3	M1 A correct method to solve the quadratic equation $6x^2 + 37x - 35 (= 0)$ using any correct method (if factorising, allow brackets which expanded give 2 out of 3 terms correct) (if using formula allow one sign error in substitution and some simplification – allow as far as $\frac{-37 \pm \sqrt{1369 + 840}}{12}$) or completing the square as far as shown on left
	$\frac{5}{6}$ oe and -7			A1 dep on M1 correct critical values (allow 0.83)
	Working must be seen for both accuracy marks as asked for in question	$-7 \le x \le \frac{5}{6}$		A1 dep on M1 $oe \ eg -7 \le x \le 0.83,$ $\left[-7, \frac{5}{6} \right] Accept \ x \le \frac{5}{6}, \ x \ge -7$
				Total 3 marks

Question	Working	Answer	Mark	Notes
17 (a)		12	1	B1
(b)	$\frac{\sqrt{1-\sqrt{2}}}{1-\sqrt{2}} \times \frac{\sqrt{1-\sqrt{2}}}{1+\sqrt{2}} \text{ or } \frac{\sqrt{1-\sqrt{2}}}{1-\sqrt{2}} \times \frac{\sqrt{1-\sqrt{2}}}{-1-\sqrt{2}} \text{ oe}$		3	M1 Multiplying numerator and denominator by $1+\sqrt{2}$
	$\frac{5 - \sqrt{36} + 5\sqrt{2} - \sqrt{18}}{1 + \sqrt{2} - \sqrt{2} - 2} \text{ or } \frac{5 - 6 - 3\sqrt{2} + 5\sqrt{2}}{-1} \text{ or } \frac{-5 + 6 + 3\sqrt{2} - 5\sqrt{2}}{1} \text{ oe}$ $\frac{-5 + 6 + 3\sqrt{2} - 5\sqrt{2}}{1} \text{ oe}$ $\text{NB:allow } \sqrt{18} \text{ or } 3\sqrt{2} \sqrt{36} \text{ or } 6 \text{ or } \sqrt{6}\sqrt{6}$			M1 Showing correct expansions (not necessarily as a fraction)
	working required	1−2√2		A1 dep on M2 (ie all stages of working must be shown convincingly) or for stating $a = 1$ and $b = -2$
				Total 4 marks

Question		Working	Answer	Mark	Notes
18 (a	1)		$\frac{k}{}$	1	B1 allow kx^{-1}
			X		
(b	o)(i)		-46	1	B1 cao
(ii	i)	$\frac{3(2-3x^4)}{2-(2-3x^4)} \text{ or } \frac{6-9x^4}{2-2+3x^4} \text{ oe or } \frac{6-9x^4}{3x^4} \text{ oe}$		2	M1
		Correct answer scores full marks (unless from obvious incorrect working)	$\frac{2-3x^4}{x^4}$		A1 allow $\frac{2}{x^4} - 3$ oe
					Total 4 marks

Quest	ion	Working	Answer	Mark	Notes
19	(a)(i)		140	1	B1
	(a)(ii)		opposite angles of a cyclic quadrilateral (add to 180°) oe	1	B1 dep on B1 in (a)(i) or seeing 180 – 40 with no contradiction oe eg angle at centre is double (2 ×) angle at circumference oe AND angles around a point (or point 360)
	(b)	ADB = 66 or ABO = 90 - 66 (=24) or BAO = 90 - 66 (=24) or $ODB = \frac{180 - 80}{2} \text{ (=50) or}$ DOB reflex = 280		3	M1 Clearly labelled in working or shown on diagram
		For 2 of: ADB = 66 or ABO = 90 - 66 (=24) or BAO = 90 - 66 (=24) or $ODB = \frac{180 - 80}{2}$ (= 50) DOB reflex = 280			M1 (award M2 for 360 – (280 + 40 + 24) oe
		Correct answer scores full marks (unless from obvious incorrect working)	16		A1
					Total 5 marks

Question	Working	Answer	Mark	Notes
20		$2x + y \le 6$	3	B3 oe for all three correct
		$2y \le 5x + 1$		(B2 oe for any two correct)
		$3y + 2x \ge 4$		(B1 oe for any one correct)
				$2x + y \le 6$ equivalent to $y \le -2x + 6$ oe
				$2y \le 5x + 1$ equivalent to $y \le 2.5x + 0.5$ oe
				$3y + 2x \ge 4$ equivalent to $y \ge -\frac{2}{3}x + \frac{4}{3}$ oe
				Allow the following inequalities
				2x + y < 6 oe
				2y < 5x + 1 oe
				3y + 2x > 4 oe
				Total 3 marks

Question	Working	Answer	Mark	Notes
21	e.g.		5	M1
	$(\overrightarrow{AB} =) 2\mathbf{b} - 2\mathbf{a}$ oe or			
	$(\overrightarrow{BA} =) 2\mathbf{a} - 2\mathbf{b}$ oe or			
	$(\overrightarrow{BD} =) 2(2\mathbf{b} - 2\mathbf{a})(= 4\mathbf{b} - 4\mathbf{a})$ oe or			
	$(\overrightarrow{AD} =)3(2\mathbf{b} - 2\mathbf{a})(=6\mathbf{b} - 6\mathbf{a})$ oe			
	e.g. $(\overrightarrow{OE} =) 2\mathbf{b} + 2(2\mathbf{b} - 2\mathbf{a}) + 7\mathbf{a} + 3\mathbf{b} (= 3\mathbf{a} + 9\mathbf{b})$ oe or			M2 for 2 correct paths seen M1 for 1 correct path seen
	$(\overrightarrow{OC} = 2\mathbf{a} + \lambda(2\mathbf{b} - 2\mathbf{a}) = (2 - 2\lambda)\mathbf{a} + 2\lambda\mathbf{b} \text{ oe or } 2\mathbf{b} + \lambda(2\mathbf{a} - 2\mathbf{b})\text{ or}$			Any correct path for <i>OC</i> passing through <i>A</i> or <i>B</i> involving a variable
	$(\overrightarrow{CE} =)(2\mathbf{b} - 2\mathbf{a}) - \lambda(2\mathbf{b} - 2\mathbf{a}) + 2(2\mathbf{b} - 2\mathbf{a}) + 7\mathbf{a} + 3\mathbf{b} = (1 + 2\lambda)\mathbf{a} + (9 - 2\lambda)\mathbf{b}$			through 71 of B involving a variable
	e.g. $2-2\lambda + 1+2\lambda = 2-2\lambda + 3 = (1+2\lambda) + 1 = 3$			M1 for comparing coefficients of a and b for
	$\frac{2-2\lambda}{2\lambda} = \frac{1+2\lambda}{9-2\lambda} \text{ oe or } \frac{2-2\lambda}{2\lambda} = \frac{3}{9} \text{ oe or } \frac{(1+2\lambda)}{(9-2\lambda)} = \frac{1}{3} \text{ oe or } \lambda = \frac{3}{4}$			
	or $(32\pi)^{-3}$			(OC and CE) or
				(OC and OE) or
	$(2-2\lambda)\mathbf{a} + 2\lambda\mathbf{b} = \mu(3\mathbf{a} + 9\mathbf{b}) \text{ or } \lambda = \frac{3}{4} \text{ or } \mu = \frac{1}{6}$			(CE and OE)
	or			OC is a multiple of OE
	$2\mathbf{b} + \lambda(2\mathbf{a} - 2\mathbf{b}) = \mu(3\mathbf{a} + 9\mathbf{b}) \text{ or } \lambda = \frac{1}{4} \text{ or } \mu = \frac{5}{6}$			Two different paths for OC
		1:5		A1 dep M2 oe e.g 2 : 10
	Working required			Total 5 marks

Question	Working	Answer	Mark	Notes
21	e.g.		5	M1
ALT	$(\overrightarrow{AB} =)2\mathbf{b} - 2\mathbf{a}$ oe or			
	$(\overrightarrow{BA} =)2\mathbf{a} - 2\mathbf{b}$ oe or			
	$(\overrightarrow{BD} =)2(2\mathbf{b} - 2\mathbf{a})(=4\mathbf{b} - 4\mathbf{a})$ oe or			
	$(\overrightarrow{AD} =)3(2\mathbf{b} - 2\mathbf{a})(=6\mathbf{b} - 6\mathbf{a})$ oe			
	e.g.			M1
	$\left(\overrightarrow{OE} = 2\mathbf{b} + 2(2\mathbf{b} - 2\mathbf{a}) + 7\mathbf{a} + 3\mathbf{b} = 3\mathbf{a} + 9\mathbf{b}\right)$ oe			
	e.g.			M1
	$(\overrightarrow{AE} = 2\mathbf{b} - 2\mathbf{a} + 2(2\mathbf{b} - 2\mathbf{a}) + 7\mathbf{a} + 3\mathbf{b} = \mathbf{a} + 9\mathbf{b})$ oe			
	$\left[\overrightarrow{AE} = \lambda \overrightarrow{AD} + \mu \overrightarrow{OE}\right]$			M1
	$\mathbf{a} + 9\mathbf{b} = \lambda (6\mathbf{b} - 6\mathbf{a}) + \mu (3\mathbf{a} + 9\mathbf{b})$ oe or			
	$\mathbf{a} + 9\mathbf{b} = \lambda (6\mathbf{b} - 6\mathbf{a}) + \mu (3\mathbf{a} + 9\mathbf{b}) \text{ oe or}$ $1 = -6\lambda + 3\mu \text{ oe and } 9 = 6\lambda + 9\mu \text{ oe or or } \lambda = \frac{1}{4} \text{ or } \mu = \frac{5}{6}$			
		1:5		A1 dep on M2 oe e.g 2 : 10
	Working required			Total 5 marks

					Edexce	l average	es: score	s of can	didates v	vho achi	eved gra	de:	
Qn	Skill tested	Mean score	Max score	Mean %	ALL	9	8	7	6	5	4	3	U
1	Linear equations	2.52	3	84	2.52	2.96	2.92	2.86	2.76	2.45	2.01	1.38	0.57
2	Set language and notation	2.44	3	81	2.44	2.94	2.83	2.68	2.56	2.36	1.90	1.46	0.79
3	Simultaneous linear equations	2.17	3	72	2.17	2.95	2.83	2.68	2.32	1.80	1.30	0.49	0.07
4	Powers and roots	1.50	2	75	1.50	1.88	1.79	1.72	1.59	1.40	1.15	0.73	0.25
5	Probability	4.49	7	64	4.49	6.80	6.43	5.91	4.67	3.03	1.39	0.46	0.12
6	Fractions	2.18	3	73	2.18	2.76	2.68	2.52	2.28	1.91	1.47	1.14	0.61
7	Powers and roots	4.57	7	65	4.57	6.74	6.17	5.46	4.42	3.31	2.30	1.36	0.55
8	Mensuration of 2D shapes	3.05	5	61	3.05	4.84	4.5	4.02	2.98	1.64	0.87	0.37	0.18
9	Graphical representation of data	3.2	5	64	3.2	4.58	4.14	3.59	3.14	2.68	1.83	0.98	0.55
10	Algebraic manipulation	1.74	3	58	1.74	2.76	2.55	2.12	1.66	1.13	0.59	0.27	0.05
11	Construction	1.08	2	54	1.08	1.72	1.51	1.27	0.94	0.72	0.50	0.19	0.08
12	Calculus	1.58	3	53	1.58	2.72	2.11	1.68	1.17	0.86	0.71	0.64	0.43
13	Quadratic equations	2.35	5	47	2.35	4.71	3.87	2.65	1.51	0.72	0.28	0.07	0.01
14	Applying number	0.92	2	46	0.92	1.82	1.45	1.02	0.66	0.32	0.13	0.03	0.00
15	Proportion	1.19	3	40	1.19	2.54	1.85	1.29	0.69	0.35	0.13	0.05	0.01
16	Inequalities	1.10	3	37	1.10	2.40	1.77	1.11	0.61	0.26	0.12	0.03	0.00
17	Powers and roots	1.54	4	39	1.54	3.43	2.31	1.42	0.89	0.48	0.18	0.06	0.05
18	Function notation	1.43	4	36	1.43	3.00	2.06	1.39	0.97	0.56	0.22	0.14	0.07
19	Circle properties	1.8	5	36	1.8	3.9	2.68	1.72	1.05	0.62	0.23	0.05	0.03
20	Inequalities	1.00	3	33	1.00	2.45	1.54	0.77	0.44	0.19	0.04	0.04	0.00
21	Vectors	0.94	5	19	0.94	2.71	1.23	0.54	0.18	0.09	0.01	0.00	0.00
		42.79	80	53	42.79	70.61	59.22	48.42	37.49	26.88	17.36	9.94	4.42

Suggested grade boundaries

Grade	9	8	7	6	5	4	3
Mark	65	54	43	32	22	14	7